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Abstract. Deviations from Fourier’s law emerge from numerical simulations of various lattices
modelling solids. Non-integrability and moreover chaotic motion are considered to be conditions
of normal heat conduction. However, these are not sufficient conditions. Using a simple model
as an example, we show that non-diffusive transport could occur even in the presence of disorder
in the lattice and completely chaotic dynamics. We conclude that diffusive and non-diffusive
transport can coexist, while the system is moving along a chaotic trajectory in the phase space.

1. Introduction

Normal thermal conduction in dielectric solids, which is formulated within Fourier’s law,
originates from diffusive heat transport. It has proved an enduring problem, still containing
unresolved questions concerning the constructive properties of model systems yielding
normal conduction [1–5]. It is now understood that non-linearity and non-integrability of the
equations of motion do not necessarily result in ergodicity or even normal heat conduction
[1, 2, 6–8]. There is a consensus that chaotic motion originating from non-linearity or,
more precisely, non-integrability is essential for Fourier’s law to be obeyed. But it is not
known which features of a model guarantee chaotic motion and normal heat conduction,
and whether or not chaotic motion is a sufficient condition for normal heat conduction.
To confirm Fourier’s law for a particular lattice model, one has to check the asymptotic
behaviour of the heat flux as a function of the system size.

The purpose of this paper is to study the connection between normal heat conduction
and chaotic motion. To this end we use a simple two-dimensional anharmonic model
with mass disorder and solve the equations of motion numerically (section 2). We find an
asymptotic behaviour of the heat flux which differs from the case of normal heat conduction.
This indicates the existence of a non-diffusive contribution to the heat current (section 3).
On the other hand, inspection of the dynamics of the model reveals chaotic motion with
the probability of unity (section 4). This suggests that chaotic motion is not a sufficient
condition for diffusive transport and normal heat conduction (section 5).

2. The model

The structure of the model system consists of a two-dimensional [9] regular triangular
lattice with nearest-neighbour bonds and mass disorder. The massesmi are equally distrib-
uted in the range 1−w, . . . ,1+w andw is set to 0.8. The bonds are represented by pair
potentials:

v(rij ) = (rij − 1)2− ϕ3(rij − 1)3+ ϕ4(rij − 1)4. (1)
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The quantityrij is the instantaneous bond length of the nearest neighboursi andj . Their
distance apart at rest is unity. Several values of the anharmonic coefficientsϕ3 > 0 and
ϕ4 > 0 are chosen in such a way that they correspond to the Lennard-Jones potential as
regards order of magnitude and that there is only one minimum inv(rij ). With the help
of this model, non-diffusive transport can be shown not to be a feature specific to ordered
systems alone. Another advantage of the model is its completely chaotic motion even at
temperatures corresponding to realistic vibrational amplitudes, i.e.1rij ∝ 1

20 at T = 1
200.

Below we refer to this temperatureT taken in energy units, i.e. Boltzmann’s constant is
set to unity. The units of all of the mechanical quantities are defined by setting the lattice
constant, the mean mass and the factor of the right-hand side of equation (1) to unity.

The boundaries of the system are not fixed; instead they are allowed to vibrate freely.
In order to calculate the current in the steady state, the lattice is attached at two opposite
boundaries to heat baths. The two heat baths are simulated by the reversible Nosé–Hoover
equations [10, 11]. At each of the boundaries all degrees of freedom within two layers are
in contact with a heat bath. The parameter which controls the response time of the heat
baths is suitably chosen to beτ = 3 which is of the order of the mean period of vibration.

The equations of motion for thermal equilibrium and non-equilibrium are solved using
the efficient velocity Verlet algorithm [12]. The details of the simulation technique that we
used are also described in an earlier paper [13].

3. Heat conduction

The introduction pointed out the problem of normal heat conduction. For the calculation
of heat conductivities it is necessary to check whether or not the lattice normally conducts
heat. Usually, the coefficientsκL obtained for systems of finite lengthsL are treated as
being intensive. Because the numerical simulations are restricted to fairly small systems,
this criterion is often difficult to meet.

Consider the non-equilibrium case of a system which is coupled to two heat baths
separated by the distanceL. Assuming normal heat conduction, the calculated conductivity
κL is related to the intrinsic oneκ∞ by

L

κL
= L

κ∞
+ %1+ %2. (2)

The quantities%1,2 are the resistances at the interfaces between the heat baths and the bulk of
the system. The assumption of normal heat conduction implies that the intrinsic resistance
L/κ∞ can be defined independently of the properties of the surfaces of the sample. It is
not valid, for example, for the harmonic limiting case, because the intrinsic resistance is not
defined then and the quantityκL is mainly a function of the coupling at the interfaces [14].

Furthermore, it is presumed thatκL is determined by

|jL| = κL |T2− T1|
L

(3)

formally corresponding to Fourier’s law. Herein,jL is the time-averaged heat flux in the
steady state andT1,2 are the temperatures of the heat baths. This equation involves an
average of the reciprocal intrinsic conductivity over the distinct temperatures in the system,
but this is not appropriate for our considerations. Obviously, even in the case of normal
heat conduction the coefficientκL essentially depends onL unlessL/κ∞ � %1 + %2. A
statement similar to equation (2) is valid ifκL is calculated from the equilibrium fluctuations
using e.g. the Kubo formula. Instead of interface resistances%1,2, a term taking scattering
off the boundaries into account occurs [13].
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Figure 1. The heat currentjL in the non-equilibrium steady state as a function of the reciprocal
of the sample lengthLx for several pairs(f3, f4). The values forjL are calculated for several
numbers of layersLx in the range 30–300. The symbols represent the values from the computer
simulation. The lines are quadratic fitting functions. The temperatures areT1 = 1/400 and
T2 = 3/400. The width of the systems is fixed at 20 layers. The values are given in reduced
units.

Figure 2. The profile of the temperature along thex-axis. The size of the systemN = 80×20;
(f3, f4) = (0, 9).

In the following we check our model system for the type of heat conduction. Thereby
equation (2) is taken as anansatz. With the help of thisansatzthe quantityκL in equation (3)
can be replaced. Then the expansion of the currentjL in terms of 1/L does not contain a
constant term. Figure 1 displays the dependence of the calculated currents on 1/L at fixed
bath temperaturesT2/3= T1 = 1/400. The symbols mark the values obtained by computer
simulation with three pairs of anharmonic parameters(ϕ3, ϕ4) for the system defined above.
Because the symbols may be connected by curves which are almost linear, the restriction
of the fitting functions to second-degree polynomials is justified. This also means that the
influence of the interface resistances is taken into account in the lowest order. It turns out
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that the constant term of each fitting function significantly differs from zero (cf. the error
bars at 1/L = 0), i.e. the currentjL cannot be represented by an analytic expansion in 1/L

whose lowest-order term is the linear one. This contradicts Fourier’s law. It indicates the
existence of a non-diffusive contribution to the heat current.

It should be mentioned that the profiles of the temperature through the system are quite
smooth for all of the pairs of the anharmonic parameters and for all of the sizes of the
lattice that we used. There are no sharp jumps of the temperature near the boundaries. A
typical profile is shown in figure 2.

Figure 3. The distance (on a logarithmic scale) of two initially neighbouring trajectories on the
energy surfaceE/(2N) = 1/200 in the phase space.

4. Characterization of the chaotic motion

Chaotic motion is considered to be a prerequisite for normal heat transport. Therefore the
nature of the inner dynamics in the bulk of our lattice model without heat baths should be
checked. Figure 3 shows how the distance of two initially neighbouring trajectories in the
phase space typically evolves. The starting points in the phase space are arbitrarily chosen
under the condition of vanishing total (angular) momentum. Almost all of the allowed
starting points yield an evolution of the distance very similar to the one plotted in the
figure. The distance diverges in an exponential manner over a few orders of magnitude.
At long times the distance tends towards a constant mean value. This is due to the loss
of correlation between the two trajectories. The slope of the exponential part of the graph
corresponds to the maximum Lyapunov exponent. It is the maximum one because the
numerical simulation acts like an iteration process. At the end of the initial phase (not
plotted in figure 3) the distance vector in the phase space almost admits just one projection,
which corresponds to the largest exponent. The value of this exponent is calculated from
the slope of a linear function obtained by means of least-squares fitting.

The measure of the chaotic areas in the phase space at a given energy is determined in
the following way [3].

A set ofM initial states on the energy surface is arbitrarily chosen. For each initial
state the distanced(t) is computed and approximated by an exponential functionc exp{λt}
as well as by a linear functionb0 + b1t . If the mean squared errors of the approximations
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obey the relation∫ t̃

0
dt (ceλt − d(t))2 <

∫ t̃

0
dt (b0+ b1t − d(t))2 (4)

then the initial state is assumed to lie in a chaotic region. LetM1 be the number of chaotic
states. Then the frequencyM1/M may be taken as a measure of the chaotic regions in the
phase space. The result is insensitive to the choice of the upper limit,t̃ , of the integrals
in relation (4) unlessλt̃ � 1. With the valuet̃ = 4/λ, the distinction between linear and
exponential divergence should be sufficiently reliable [15].

Figure 4. The measureM1/M of the chaotic regions and the corresponding Lyapunov exponents
λ. The valuesλ are averages merely over the chaotic regions. The error bars are the corres-
ponding standard deviations. The size of the systemN = 10× 10; the parameters(ϕ3, ϕ4) are
given within the plot;M = 50.

Figure 4 shows the measureM1/M and the corresponding maximum Lyapunov exponent
as function of the mean energy per degree of freedomE/(2N). The quantityN is the
number of particles. At sufficiently high energies, let us sayE/(2N) > 1/200, the measure
M1/M is unity, i.e. almost the whole of the energetically allowed phase space is chaotic.
At small energies,M1/M approaches zero, i.e. non-chaotic motion, because the harmonic
limiting case is integrable. Within the scope of the model under consideration, the Lyapunov
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exponents are increasing functions of the parametersϕ3 andϕ4 as well as of the energy.
Over a wide range of energy,λ ∼ E ∼ T holds.

5. Conclusions

Now it becomes clear that the answer to the question [2] of whether chaotic motion is a
sufficient condition for diffusive transport and normal heat conduction is in the negative.
This can be deduced in an exemplary fashion from the model under consideration.

Despite the fact thatM1/M = 1 at high energies, the existence ofnon-chaotic trajectories
cannot be ruled out. But the measure, i.e. the probability, of these trajectories is zero.
Therefore, non-chaotic trajectories, even if they actually exist, do not contribute to thermal
averages. In the case of chaotic motion withM1/M 6= 1 one would not be surprised if
there was a non-diffusive current. But in the case under consideration withM1/M = 1,
there is also a non-vanishing non-diffusive contribution to the heat current. As a result,
trajectories with exponential divergence, i.e. chaotic ones, are responsible for non-diffusive
transport. The means that the motion along a chaotic trajectory can result in diffusive and
non-diffusive transport at the same time. This is consistent with the KAM theorem, which
states that non-integrable motion may occur to some extent on persistent hyper-tori of the
phase space. Due to the fact that the spectrum of Lyapunov exponents of a Hamiltonian
system also contains non-positive exponents [16], there are always some projections of a
state vector which do not contribute to the exponential divergence. Microscopic excitations
causing non-diffusive transport should correspond to such projections. These projections
may be viewed as degrees of freedom.

In other words, there may be a set of degrees of freedom which is not taking part in the
chaotic motion of the system. Instead, these degrees of freedom are moving in a regular
way. Therefore these degrees of freedom do not transport energy in a diffusive manner.
Of course, this set can only have a weak coupling to all of the chaotically moving degrees
of freedom. Given such a set of regularly moving degrees of freedom, we can observe
non-diffusive transport while the system itself evolves chaotically.

The question of the kind and the nature of the non-diffusive excitations arises. First of
all, we argue that the deviations from Fourier’s law found are not simply due to short sample
lengths allowing energy packets to propagate ballistically from one end of the sample to
the other. It is guessed that soliton-like pulses are the most effectively transporting kind
of non-linear wave packet [17–20]. This is also true for disorder of the masses [17]. In
our two-dimensional models with(ϕ3, ϕ4) = (0, 150) or (20, 150) soliton-like pulses could
exist, if linearly spreading fronts are forming. In the (20, 150) case, e.g., the decay time
for merely dynamical scattering is about 17. The velocity of the pulses is approximately 2.
Consequently, the mean scattering length is about 34. This is a short length compared to
our largest systems with 300 layers.

The data given above do not allow any final decision to be reached regarding whether
an expansion of the currentjL at 1/L = 0 exists or not. In principle,jL could also contain a
power function with respect to 1/L in such a way that it yields lim1/L→0 jL = 0. However,
a simple power law like that in the case of pure super-diffusion in harmonic lattices does
not match the present data. Nonetheless, the current may consist of different contributions.
One contribution could result from super-diffusion, i.e. from slowly decaying excitations
of weakly localized eigenstates. This contribution should be drastically changed if the free
boundaries are changed to the fixed boundaries of the lattice model. The proof of this is
left to future investigations.

Finally, let us state once more the main result. The answer to the question posed by
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Ford [2] regarding whether or not chaos is a sufficient condition for diffusive energy transport
is in the negative [21]. Even in the case of measure-unity chaos, or, more specifically, in
the case of evolution along a chaotic trajectory, non-diffusive and diffusive transport can
coexist.
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